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The Householder-Fox algorithm uses the Cholesky decomposition to calculate an ortho- 
normal basis for the range of a projection. In this paper it is shown that the algorithm 
continues to give good results when it is applied to an approximate projection in the presence 
of rounding error. 

1. INTRODUCTION 

A real orthogonal projection is a real matrix A satisfying the following two con- 
ditions: 

1. AT=A (symmetry), 

2. A2 = A (idempotence). 
(1.1) 

Applied to a vector x such a matrix produces the orthogonal projection Ax of x onto 
the coIumn space of A (denoted by B(A)); that is, x1 = Ax and x2 = (I- A) x 
are the unique vectors satisfying 

1. x=x,+x,, 

2. xl E W(A), (1.2) 
3. x,1x,. 

Conditions (1.2) are easily seen to follow from (1.1). 
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In some applications one is given a projection A and wishes to find an orthonormal 
basis for the subspace B(A). For example, if A is known to be of low rank, say 
rank(A) = Y, then A can be represented economically in the form 

A = QQ’ 

where the r columns of Q form an orthonormal basis for W(A). The savings in storage 
can be substantial if the order n of A is very much greater than r; for A requires n2/2 
locations for its storage while Q requires only nr. Projections of low rank arise in the 
study of the spectra of molecules with high degress of symmetry (cf. the work of Fox 
and Krohn [3]). 

One method for computing Q is to apply various orghogonalizing techniques 
to the columns of A. For example, one might use Householder transformations with 
column pivoting to compute a QR factorization of A [5,7]. However, these techniques 
do not preserve the symmetry of A. Moreover, there is considerable evidence that when 
A is sparse, orthogonalization methods can lead to excessive fill-in [2]. 

A method which is symmetry preserving is to calculate the eigensystem of A [6]. 
The eigenvalues of A must be either zero or unity, and the eigenvectors corresponding 
to the eigenvalue unity form a basis for B(A). However, the method suffers from fill-in 
problems, and does not directly use the idempotency of A. 

Householder and [4] have observed that the Cholesky factorization of a pro- 
jection gives the required basis for B’(A) directly. The form of the Cholesky decompo- 
sition used here is stated in the following theorem, whose proof is usually a construc- 
tive technique for calculating it (see section 3). 

THEOREM 1.1. Let A be a positioe semidefinite matrix of order n and rank r. Then 
there is a permutation matrix P and an n x r lower trapezoidal matrix of rank r such 
that 

PTAP = LLT. 

The process by which the rows and columns of A are rearranged, i.e., the manner in 
which P is chosen, is called pivoting. For the present we shall assume that the pivoting 
has been done initially and suppress mention of the matrix P. We shall return to the 
role of pivoting in the final section of this paper. 

The importance of the Cholesky decomposition for our purposes is contained in 
the following corollary, 

COROLLARY 1.2. Suppose, in addition to the hypotheses of Theorem 1.1, that 
A2 = A. Then 

LTL = I. 

ProoJ From the relation A = LLT, it follows that 

LLTLLT = A2 = A = LLT. (1.3) 
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Since the colums of L are inpependent, L has a pseudoinverse L+ = (LTL)-l LT 
satisfying L+L = I. Then from (1.3) 

LTL = L+(LLTLLT) L+T = L+(LLT) L+T = I. 1 

The import of the corollary is that the columns of L are orthonormal. They 
of course span W(A); hence the columns of L form the required basis. However, in 
practice the algorithm must be used in the presence of errors of various sorts, and it 
is the purpose of this paper to show that one can still expect to obtain good results. 

2. ASSESSMENT OF THE FINAL RESULTS 

There are two sources of error in the use of the Householder-Fox algorithm. 
First the matrix A may not be exactly idempotent (in most applications the symmetry 
of A is forced by other considerations). We summarize this state of affairs by writing 

A2 = A + F, (2.1) 

where the symmetric matrix F is presumed small. 
The second source of error is the rounding error made in the course of the Cholesky 

reduction of A. The effects of rounding error will be investigated in more detail in 
Section 3. For the present we will make the reasonable assumption that the computed 
matrix L satisfies a stability requirement of the form 

LLT = A + E, 

where E is a small matrix of order rounding error (cf. Theorem 3.2 below). 
Assuming (2.1) and (2.2), we shall in this section give answers to the following two 
questions: 

1. How near are the columns of L to orthonormality ? 
2. What is W(L) ? 

We shall answer these questions in terms of norms. Specifically we shall use the 
Euclidean vector norm defined by 

11 x 11 = (xTx)‘12 

and the spectral matrix norm defined by 

II A II = sup II Ax II. 11x11=1 

When A is symmetric, its spectral norm is the maximum of the absolute values of the 
eigenvalues of A. Also for any matrix X, I/ XII2 = II XTX(j. 

We begin our development by locating the eignenvalues of the matrix A which for 
the rest of this paper is assumed to be symmetric. The eigenvalues of a projection 
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can be only zero and unity, and Theorem 2.1 generalizes this fact by showing that 
an approximate projection in the sense of (2.1) must have eigenvalues clustering 
about zero and unity. 

THEOREM 2.1. Let A satisfy (2.1). Then the eigenvalues of A lie in one of the two 
intervals 

[ 1 - (1 + 4 II FllY 1 - (1 2 > - 2 4 \[FII)lj2 I 
and 

[ 1 + (1 - 4 II FllY2 1 + (1 4 II FW 2 , + 2 1 

(2.3) 

(2.4) 

In particular 
II A II G 1 + II PII- (2.5) 

Proof. The eigenvalues of A2 - A are X2 - h, where X is an eigenvalue of A. 
Since A2 - A = F, the eigenvalues of A must satisfy 

A2 - X E [II Fll> II Fill, 

which is equivalent to saying that h lies in one of the two intervals (2.3) or (2.4). 
The largest eigenvalue of A cannot be larger than the right-hand end of the interval 
(2.4), which is bounded by 1 + // PII. This establishes (2.5). 1 

Asymptotically for small F the intervals (2.3) and (2.4) reduce to [--II Fll, II Fl/] 
and I1 - II WI, 1 + II Fill. 

If A is a projection, then so is I - A. If A is an approximate projection in the sense 
of (2.1), then 

(I - A)2 = Z - 2A + A2 = (I - A) + F. 

Hence (I - A) is an approximate projection, and from Theorem 2.1 we have the 
following bound: 

I/ 1 - A II d 1 + II 4. 

We are now in a position to answer the first of our questions. 

THEOREM 2.2. Let the matrix A satisfy (2.1) and let L satisfy (2.2). Suppose that 
L is of full column rank and satiszes 

where 
E II L+ /I2 < 4, (2.6) 

Then 
E = II FII + II EM2 + 2 II Fll + II Eli). 

and 
11 L+ 112 < (1 - 2+1 (2.7) 

II LTL --II1 (6. (2.8) 
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ProoJ: From (2.1) and (2.2) it follows that 

LLTLLT=(A+E)2=A$E+F-E~EA+AE+E2. 

Hence 
L=L = I + L+[F + E(A - I) + AE + E2] LT+. 

It follows from (2.9) and (2.6) that 

/I LTL - III < g. 

(2.9) 

In particular no eigenvalue of LTL can be less than or equal to l/2, from which it 
follows that 11 L+ II2 < 2. Again from (2.9) 

II LTL - III < 25 

and from this the bound (2.7) follows. Finally, applying (2.7) to (2.9) gives (2.8) 1 

Condition (2.6) is a requirement that the columns of L be independent. It is not 
very strong, and if it is satisfied it implies that the columns of L are almost orthonormal 
in the sense of the inequality (2.8), whose right-hand side is essentially 11 F // + 2 11 E/j. 
Indeed the theorem may be interpreted as saying that the columns of an LLT decom- 
position of A cannot be slightly independent without being completely so. 

Our second question amounts to asking if, having obtained L, we have 
obtained something useful. This of course will depend on what we originally 
desired to compute; however, in most applications we are seeking a basis for the 
column space of an exact projection which we believe to be near A. Now any matrix 
satisfying (2.1) divides n-space naturally into two complementary subspaces. They 
are the subspace J;l; spanned by the eigenvectors associated with the eigenvalues 
clustered about unity and the subspace d0 spanned by the eigenvectors associated 
with the eigenvalues clustered about zero. These subspaces are orthogonal com- 
plements, and because the eigenvalues associated with the two subspaces are well 
separated, they are insensitive to small perturbations of A (see [I] for further details). 
It follows that &I must be a good approximation to the column space of any projection 
near A. 

We should like to show that W(L) is a good approximation to &I . We shall do this 
indirectly by showing that the columns of L are almost orthogonal to do. Since 
the columns of L are almost orthonormal 9%‘(L) must be almost orthogonal to sa2, 
and cannot help being a good approximation to &I . 

THEOREM 2.3. Under the hypotheses of Theorem 2.2, if for any vector x with 
IIXII = 1 

II Ax II = 6, 
then 
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Proof From (2.2) we have 

LLTX = (A + E) x = Ax + Ex. 

Hence 

and 
LTX = L+(Ax + Ex) 

It should be pointed out that, having obtained L, one can approximate the projection 
onto do by I - LLT. If the dimension of L& is very much less than that of ~2~ , it 
will pay to decompose I - A to obtain an L spanning LX& that has fewer columns. 
The projection for ~4~ can then be represented as I - LLT (however, some care must 
be taken to insure the orthogonality of the computed projections (LLT) x and 
(I - LLT) x). 

3. THE EFFECTS OF ROUNDING ERROR AND THE ROLE OF PIVOTING 

The size of the matrix E that describes the effects of rounding error on the compu- 
tation has played an important role in Section 2. In this section we shall give reasons 
for expecting E to be quite small. The analysis also makes clear the role of pivoting 
in computing the decomposition. 

We begin with a detailed description of the Cholesky algorithm in its “exterior 
product” form. The algorithm proceeds in stages. At the kth stage A has been decom- 
posed in the form 

A = LkLkT + Bfi, 

where L, has k columns and Brie has the form 

Bk = (8 2;‘) (3.1) 

with B&t) of order n - k. Denoting by b kk) the kth column of B, and by /3$ the (k, k) 
element of Bk , we form 

and 

B k+l 
=Bk "yrT 

kk 

L k+l = Lk' 

It is easily verified that Lk+l is lower trapezoidal, that Bk+l is zero except for its trailing 
principal minor of order n - k - 1, and that A = Lz+lLk+l -I- Bk+l . Thus the decom- 
position is advanced one stage. The algorithm terminates when some Bk is negligible. 
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The algorithm cannot be carried out in the form described above if flit’ is not 
positive. However, in this event it may happen that there is an integer 2, 3 k such 
that /3iiik is positive. Let Pk denote the permutation matrix obtained by interchanging 
rows k and 1, of the identity matrix and consider the decomposition 

PRAPkT = (P,L,)(P,LJT + P,BPbT. 

The matrix P,L, is still lower trapezoidal, and the matrix P,B,PkT still has the form 
(3.1). However, the (k, k)th element of PkBePkT is /3$ , and the decomposition of 
PkAPiT can proceed as usual. This process of interchanging an acceptable element 
into the (k, k)th position of Bk is the pivoting process mentioned in Section 1. 

It is still conceivable that no diagonal element of Bk is positive. We shall show that 
this is not likely to happen unless B, is itself negligible. We begin by proving a theorem 
about the diagonal elements of nearly idempotent matrices. 

THEOREM 3.1. Let the symmetric matrix A of order n satisfy A2 = A + F, where 

1 - (1 - 4 I/ Fli)1/2 1 y-- 
2 -<z. 

Then either jl A // < y or there is a diagonal element olii of A that satisfies 

Proof. As was observed in Theorem 2.1, the eigenvalues of A lie in the nonover- 
lapping intervals [-y, r] and [1 - y, 1 + ~1. By perturbing the eigenvalues in the 
first interval to zero and those in the second interval to unity we obtain a matrix 
A + G whose eigenvalues are either zero or unity; i.e., A + G is a projection. More- 
over, /I G I/ < y. Now if jl A II > y, then one of the eigenvalues of A must lie in the 
interval [I - y, 1 + ~1, and A + G must have unity for an eigenvalue. The trace 
of A + G is the sum of the eigenvalues of A + G; hence 

Thus there is a diagonal element olii + yii of A + G satisfying 

aii + yii > l/n. (3.3) 

Since yid 9 II G I/, (3.3) implies (3.2) 1 

It must be noted that the term l/n in (3.2) is an extreme lower bound and can be 
replaced by p/n, where p is the number of eigenvalues of A in the interval 
11 - Y> 1 + rl. 
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Theorem 3.1 shows that there is always a reasonable pivot element to start the 
reduction. To show that it can be completed, we shall show that the matrices BI, are 
also nearly idempotent, after which Theorem 3.1 applies to give us the required 
pivot element. In addition to the usual assumption that A2 = A + F, we shall take 
account of rounding error by suppositng that the computed LI, and Bk satisfy 

L,LkT + B, = A + EI, . 

For notational convenience we shall drop the subscripts k during the analysis. 
Let B be partitioned as in (3.1), and let A, E, and L be partitioned conformally: 

A = (AA:: $1) = (A,, A,), 

E = (2: 2;) = (El, E2)> 

Assume the L, is nonsigngular and set 

h = 11 Lpi\. 

Now 

Hence 
LLIT = A, + El . 

or 

L,LTLLIT = AITA, + AITEl + EITA, + EITEl 

= (-4, + En) + Fn - El, + -bT4 + EITA, + EITE, 

LTL = Z + L;‘(F,, - El, + A,‘E, + EITA, + E,‘E,) LIT = Z + G, (3.4) 

where 

II G II < h2[ll Fll + II E ll(3 + 2 II Fll + II E IIN. 

It also follows from (3.4) that 

II LTL II < 1 + I/ G II 
and 

II L II < 1 + t II G I!. 

We next obtain a bound for L - AL. We have 

ALLIT = A(A1 + El) = Al + F + AE, 

= (A, + Ed + 4 + (A - I) El. 
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Hence 

where 

AL = L + [F; + (A - Z) El] L;’ 

=L+H, 

Finally since B = A + E - LLT, 

B2 = A2 - ALLT - LLTA + LLTLLT + AE $ EA + E2 - ELLT - LLTE 

=(A+E)-(L+H)LT-L(LT+HT)+L(Z+G)LT 

$F+(A-Z)E$EA+E2-ELLT-LL*E 

=B-HLT-LHT+LGLT+F+(A-Z)E+EA+E2 

- ELLT - LLTE 

=B+K, 

where 

II KII d II HII (2 + II G II> + II G II (1 + II G II) 

+Il~Il+I/~Il~4+~I/~ll+II~ll+~ll~ll~~ 

If we ignore terms of the second order in the bound for )/ K/I we obtain the asymp- 
totic bound 

II Kll 5 h2(ll FII + 3 II Eil) + 2M F/l + II El0 + (II Fll + 4 /I Eli), 

in which the first term will generally dominate. Since L,LIT = A,, + E,, , the number 
A2 is an estimate of II A;: 11. This explains the role of pivoting in the algorithm. Not 
only is pivoting necessary to insure that one stage of the algorithm can be carried out, 
but it is also necessary to keep small diagonal elements from appearing in L1 . For 
if this unhappy circumstance occurs, then h must be large and we cannot guarantee the 
successful conclusion of the algorithm. Note, however, that if E and F are small we 
can hope to tolerate rather small diagonal elements, which gives us considerable 
freedom in the choice of pivot elements. 

We have not yet given a quantitative assessment of the effects of rounding error 
on our algorithm. We cite a well-known theorem [7, 81. 

THEOREM 3.2. Let the algorithm described above be carried out in t-digit binary 
floating-point arithmetic. Let 

Then 

& = max{/3$: i, j = I,..., n; 1 = l,..., k - I}. 

II & II <f(n) &P. 
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The function f(n) depends on the details of the arithmetic used; but it is certainly 
less than O(n2) with a modest order constant. The critical factor is the number /& , 
which measures the growth of the elements of the matrices B, . Since fllc < 1 + 
11 Kk /I, the above analysis applies to show that, provided we have maintained a 
reasonable degree of nonsignularity in the matrices Li’), rounding error should have 
a negligible effect on the algorithm. 

To summarize, this is a remarkably stable algorithm. Although we cannot guarantee 
that the Lik) will have small inverses, we think that it is extremely unlikely that any- 
thing untoward will happen if a reasonable pivoting strategy (e.g., choosing the largest 
diagonal element) is adopted. The cautious user can monitor the /Ik as the Bk are 
computed, after which Theorems 3.2 and 2.2 will enable him to assess his results. 
A particularly attractive feature of the algorithm is the latitude in pivoting strategies 
that the bound on // K 11 suggests are available to the user. For example, the user might 
compromise the size of his pivots to preserve sparsity in very large problems and hope 
to get away with it. Experiments by Fox and Krohn [3] in which the pivot order is 
fixed initially tend to confirm this view. 
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